A New Fuzzy Co-clustering Algorithm for Categorization of Datasets with Overlapping Clusters

نویسندگان

  • William-Chandra Tjhi
  • Lihui Chen
چکیده

Fuzzy co-clustering is a method that performs simultaneous fuzzy clustering of objects and features. In this paper, we introduce a new fuzzy coclustering algorithm for high-dimensional datasets called Cosine-Distancebased & Dual-partitioning Fuzzy Co-clustering (CODIALING FCC). Unlike many existing fuzzy co-clustering algorithms, CODIALING FCC is a dualpartitioning algorithm. It clusters the features in the same manner as it clusters the objects, that is, by partitioning them according to their natural groupings. It is also a cosine-distance-based algorithm because it utilizes the cosine distance to capture the belongingness of objects and features in the co-clusters. Our main purpose of introducing this new algorithm is to improve the performance of some prominent existing fuzzy co-clustering algorithms in dealing with datasets with high overlaps. In our opinion, this is very crucial since most real-world datasets involve significant amount of overlaps in their inherent clustering structures. We discuss how this improvement can be made through the dualpartitioning formulation adopted. Experimental results on a toy problem and five large benchmark document datasets demonstrate the effectiveness of CODIALING FCC in handling overlaps better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A heuristic-based fuzzy co-clustering algorithm for categorization of high-dimensional data

Fuzzy co-clustering is a technique that performs simultaneous fuzzy clustering of objects and features. It is known to be suitable for categorizing high-dimensional data, due to its dynamic dimensionality reduction mechanism achieved through simultaneous feature clustering. We introduce a new fuzzy co-clustering algorithm called Heuristic Fuzzy Co-clustering with the Ruspini’s condition (HFCR),...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

An Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006